
Shared Data

The examples we have seen so far have the
processes completely independent of each other.
In many problems the processes need to
coordinate by sharing some of the variables.

The multiprocessing module has a class for this:
multiprocessing.ctypes.RawValue()

The names here are getting really long. To simplify
this, we will import the modules in a different way.

If we say
 import multiprocessing
then we can use things in the multiprocessing
module, but we need to prefix the multiprocessing
name:
 multiprocessing.Process()

If we say
 from multiprocessing import *
we can use them without prefixing the module name.

In the past when we have used the random module
we said
 import random
and used it as
 x = random.randint(0, 10)

If we said instead
 from random import *
we could use this as
 x = randint(0, 10)

To make a shared variable that represents an
integer, we use

 r = RawValue("i", <integer value>)
such as
 r = RawValue("i", 0)

RawValues have an instance variable self. value
that represents the current value. For example, to
set r to 25 we would say
 r.value = 25.
To print r we would say
 print(r.value)

RawValues need to be created outside of the
function the processes will work on, and passed as
an argument to them.

 <FirstSharedExample.py>

You need to be careful about how you work with
shared data because the processes can modify it
asynchronously.

<SecondSharedExample.py>

<ThirdSharedExample.py>

